Haar Wavelet-Picard technique for fractional order nonlinear initial and boundary value problems
نویسندگان
چکیده
منابع مشابه
Haar Wavelet Quasilinearization Approach for Solving Nonlinear Boundary Value Problems
Objective of our paper is to present the Haar wavelet based solutions of boundary value problems by Haar collocation method and utilizing Quasilinearization technique to resolve quadratic nonlinearity in y. More accurate solutions are obtained by wavelet decomposition in the form of a multiresolution analysis of the function which represents solution of boundary value problems. Through this ana...
متن کاملA numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method
In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...
متن کاملExistence and uniqueness of solutions for p-laplacian fractional order boundary value problems
In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.
متن کاملApplication of Shannon wavelet for solving boundary value problems of fractional differential equations I
Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional diff<span style="font-family: NimbusRomNo...
متن کاملMultiple Solutions of Nonlinear Boundary Value Problems of Fractional Order: A New Analytic Iterative Technique
The purpose of this paper is to present a new kind of analytical method, the so-called residual power series, to predict and represent the multiplicity of solutions to nonlinear boundary value problems of fractional order. The present method is capable of calculating all branches of solutions simultaneously, even if these multiple solutions are very close and thus rather difficult to distinguis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Research and Essays
سال: 2014
ISSN: 1992-2248
DOI: 10.5897/sre2013.5777